МИНИСТЕРСТВО АГРАРНОЙ ПОЛИТИКИ УКРАИНЫ КЕРЧЕНСКИЙ ГОСУДАРСТВЕННЫЙ МОРСКОЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ кафедра информатики и прикладной математики

ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И ПРОГРАММИРОВАНИЕ

РАСЧЁТНО-ГРАФИЧЕСКАЯ РАБОТА

Выполнил: студент группы МК-1, шифр — 10kmk001, Петров И.П

Проверил: доцент кафедры ИиПМ Полупанов В.Н.

Керчь, 2011

Содержание

1. Постановка задачи	3
2. Исходные данные и результаты вычислений	4
3. Графическое отображение результатов	5
4. Контрольные вопросы	6

стр.

1. ПОСТАНОВКА ЗАДАЧИ

Известно, что ежегодная численность (в тысячах штук) некоторых аквакультурных популяций рыб перед сезоном вылова хорошо описывается дискретной моделью Ферхюльста:

$$Xt+1 = Xt*L*(N-Xt), t=1, 2, 3, ..., n$$
 (1)

где t – номер года;

n — число лет;

Xt – расчётная численность рыб,

Хt для t=1 — начальное значение численности;

N – критическая численность, при которой популяция может погибнуть;

L – удельная скорость ежегодного увеличения численности.

Величины n, N, L и X1 являются параметрами модели (1) и задаются таблицами в соответствии с номером варианта. Параметры различных вариантов модели приведены в таблицах 1 и 2 раздела 2 настоящих методических указаний.

Задачи, которые необходимо выполнить, состоят в следующем:

1. Используя формулу (1), необходимо построить таблицу расчётных значений численности популяций, меняющихся при различных значениях параметров (указаны в табл. 1 и 2). Рассчитываемые значения показателей должны иметь точность до третьего знака после запятой.

2. Рассчитываемые значения должны отображаться также в виде графиков, показывающих изменение численности во времени (№ года).

3. По последним (n-6) расчётным значениям численности каждой популяции определить среднее арифметическое (CA) и среднеквадратическое отклонение (стандарт, СКО) численности, используя формулы:

$$\overline{X} = \sum X/(n-6); \qquad (2) \sigma = ((\sum (X^2) - n^* \overline{X}^2)/(n-7))^{1/2} \qquad (3)$$

Эти значения должны быть помещены в таблице под исходным рядом.

4. По тем же данным повторить расчёт величин \overline{X} и σ , но не по формулам (2) и (3), а с использованием специальных функций average() и stdev(), имеющихся в группе функций электронных таблиц (категория статистических расчётов). Полученные значения отобразить с точностью до тысячных. Округлённые значения должны быть равны значениям, полученным по формулам (2) и (3).

Эти значения должны быть помещены в таблице под значениями, рассчитанными по формулам (2) и (3).

5. Повторить ещё раз расчёт X и σ с использованием специальных функций average() и stdev() с использованием последних (n-6)-ти рассчитанных значений численности трёх популяций.

6. Последние значения среднего арифметического и среднеквадратического отклонения необходимо отобразить на графике в виде линий, параллельных оси абсцисс: X = X; $X = X - \sigma$; $X = X + \sigma$.

2. ИСХОДНЫЕ ДАННЫЕ И РЕЗУЛЬТАТЫ ВЫЧИСЛЕНИЙ

Исходные данные для варианта, соответствующего шифру 10кмк001 (первая подгруппа) приведены в таблице 1.

№ популяции	L	Ν	X1*	n	
1	3,25	0,97	0,150		
2	3,24	0,98	0,145	25	
3	3,23	0,99	0,140		

Таблица 1. Параметры модели (1) для варианта №1 (подгруппа №1)

Результаты вычислений приведены в таблице 2.

Таблица 2. Расчётные значения для трёх популяций

год	X1	X2	ХЗ	Среднее (СА)	CA+CKO	CA-CKO
1	0,150	0,145	0,140	0,652	0,783	0,520
2	0,400	0,392	0,384	0,652	0,783	0,520
3	0,741	0,747	0,752	0,652	0,783	0,520
4	0,552	0,564	0,578	0,652	0,783	0,520
5	0,750	0,760	0,769	0,652	0,783	0,520
6	0,536	0,541	0,549	0,652	0,783	0,520
7	0,756	0,769	0,782	0,652	0,783	0,520
8	0,526	0,525	0,525	0,652	0,783	0,520
9	0,759	0,774	0,788	0,652	0,783	0,520
10	0,520	0,517	0,513	0,652	0,783	0,520
11	0,760	0,776	0,790	0,652	0,783	0,520
12	0,518	0,514	0,510	0,652	0,783	0,520
13	0,761	0,776	0,791	0,652	0,783	0,520
14	0,517	0,513	0,509	0,652	0,783	0,520
15	0,761	0,776	0,791	0,652	0,783	0,520
16	0,517	0,512	0,509	0,652	0,783	0,520
17	0,761	0,776	0,791	0,652	0,783	0,520
18	0,516	0,512	0,509	0,652	0,783	0,520
19	0,761	0,776	0,791	0,652	0,783	0,520
20	0,516	0,512	0,509	0,652	0,783	0,520
21	0,761	0,776	0,791	0,652	0,783	0,520
22	0,516	0,512	0,509	0,652	0,783	0,520
23	0,761	0,776	0,791	0,652	0,783	0,520
24	0,516	0,512	0,509	0,652	0,783	0,520
25	0,761	0,776	0,791	0,652	0,783	0,520
Среднее №1	0,646	0,652	0,658			
Стандарт №1	0,124	0,134	0,143			
Среднее №2	0,646	0,652	0,658			
Стандарт №2	0,124	0,134	0,143			
Среднее (СА)	· ·	0,652				
Стандарт (СКО)		0.132				

3. ГРАФИЧЕСКОЕ ОТОБРАЖЕНИЕ РЕЗУЛЬТАТОВ

На рис.1 показаны результаты вычислений в виде трёх графиков. По оси абсцисс отложены годы, по оси ординат — вычисленная численность трёх популяций. Значения численности соединены отрезками прямых линий. Первые два значения на графике не показаны. Вычисленные значения близки между собой, поэтому графики трудно разделить, большинство точек сливаются в одну точку, их трудно различить.

4. КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Расширения имён файлов электронных таблиц Gnumeric, OOo Calc, MS Excel? Ответ: ...

2. Расширения имён файлов текстовых редакторов ООо Writer, MS Word? Ответ: ...

3. Чем отличается абсолютная ссылка от относительной ссылки в электронных таблицах? Ответ: ...

4. Что такое параметры функции в электронных таблицах? Ответ: ...

5. Приведите примеры функций в электронных таблицах: с одним параметром, с тремя параметрами, без параметров? Ответ: ...

6. Как задаётся непрерывный диапазон ячеек при указании его в качестве аргументов функции?

Ответ: ...

7. Как задаются диапазоны ячеек, расположенные в различных несмежных диапазонах, при указании в качестве параметров функции? Ответ: ...

8. Приведите пример функции if в электронных таблицах? Ответ: ...

9. Порядок форматирования чисел для их отображения с точностью до определённого знака после запятой?

Ответ: ...

10. Пример вычисления среднего арифметического значения с помощью функции из категории "Статистические"?

Ответ: ...

11. Пример вычисления среднего квадратического отклонения с помощью функции из категории "Статистические"?

Ответ: ...

12. Пример вычисления суммы квадратов с помощью функции из категории "Математические"?

Ответ: ...

13. Пример подсчёта числа ячеек с помощью функции из категории "Статистические"? Ответ: ...

14. Как задаются диапазоны рядов данных и параметры при построении графика типа "Диаграмма XY"?

Ответ: ...